A Hybrid Approach Based Medical Image Retrieval System Using Feature Optimized Classification Similarity Framework
نویسنده
چکیده
For the past few years, massive upgradation is obtained in the pasture of Content Based Medical Image Retrieval (CBMIR) for effective utilization of medical images based on visual feature analysis for the purpose of diagnosis and educational research. The existing medical image retrieval systems are still not optimal to solve the feature dimensionality reduction problem which increases the computational complexity and decreases the speed of a retrieval process. The proposed CBMIR is used a hybrid approach based on Feature Extraction, Optimization of Feature Vectors, Classification of Features and Similarity Measurements. This type of CBMIR is called Feature Optimized Classification Similarity (FOCS) framework. The selected features are Textures using Gray level Co-occurrence Matrix Features (GLCM) and Tamura Features (TF) in which extracted features are formed as feature vector database. The Fuzzy based Particle Swarm Optimization (FPSO) technique is used to reduce the feature vector dimensionality and classification is performed using Fuzzy based Relevance Vector Machine (FRVM) to form groups of relevant image features that provide a natural way to classify dimensionally reduced feature vectors of images. The Euclidean Distance (ED) is used as similarity measurement to measure the significance between the query image and the target images. This FOCS approach can get the query from the user and has retrieved the needed images from the databases. The retrieval algorithm performances are estimated in terms of precision and recall. This FOCS framework comprises several benefits when compared to existing CBMIR. GLCM and TF are used to extract texture features and form a feature vector database. FuzzyPSO is used to reduce the feature vector dimensionality issues while selecting the important features in the feature vector database in which computational complexity is decreased. Fuzzy based RVM is used for feature classification in which it increases the response rate and speed of the retrieval process. This proposed FOCS framework is used to help the physician to obtain more confidence in their decisions for diagnosis and medical research students are zeal to get the essential images successfully for further investigation of their research.
منابع مشابه
A framework for medical image retrieval using merging-based classification with dependency probability-based relevance feedback
Content-based image retrieval (CBIR) systems are used to retrieve relevant images from large-scale databases. In this paper, a framework for the image retrieval of a large-scale database of medical X-ray images is presented. This framework is designed based on query image classification into several prespecified homogeneous classes. Using a merging scheme and an iterative classification, the ho...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملروشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا
In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کامل